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1 Introduction

Professor Erber has made important contributions to several areas of both pure and applied physics, making
it easy to identify topics about which one can write to celebrate his work; approaching such topics at his
level of rigor and insight is far more difficult! His contributions to fundamental electromagnetic theory and
quantum mechanics in particular include papers on electromagnetic energy density in dispersive media [1],
synchrotron-Cerenkov radiation [2], radiation reaction [3], and quantum jumps [4], to cite only a few of those
with which we are familiar. The first two papers cited, among others, deal with electromagnetic processes
in dielectric media, and a small part of that subject will be addressed here. Specifically, this article is
concerned with the quantized electromagnetic field in a dispersive and dissipative dielectric medium, and
with the energy density in such a medium. Erber’s work has also dealt with nonlinear processes in such
media as well as in vacuum, but we will restrict ourselves here to linear and idealized, homogeneous media.

This is an important subject about which much has been written, although in most of the literature it
has been assumed that the medium can be assumed to be non-dissipative at field frequencies of interest. The
theory ignoring dissipation is not without value; it can be used to describe, for example, the spontaneous
emission by an atom in a host dielectric that does not absorb radiation at the atom’s transition frequency.
But a dispersive medium cannot be non-absorbing at all frequencies. What happens, for instance, if the
medium in our example strongly absorbs radiation at the transition frequency? And what about situations in
which we cannot exclude any frequencies a priori and therefore cannot ignore absorption? In the calculation
of the van der Waals force between two neutral dielectric bodies, for example, all field frequencies can in
principle contribute to the force. For two perfectly conducting parallel plates at zero temperature, similarly,
Casimir [5] discovered, as a consequence of the zero-point electromagnetic energy of every mode, that there
is an attractive force per unit area between the plates. His original method involving changes in zero-point
field energy was later extended to dielectrics by van Kampen et al. [6] and others [7]. As emphasized by
Ginzburg [8], however, these theories invoking changes in zero-point energy ignore absorption: “ ... oddly
enough there is no mention that they consider directly only transparent media” [9]. An entirely different
route, based on the calculation of the force via the stress tensor, was taken by Lifshitz [10]; he accounts for
absorption through the fluctuation-dissipation relation between the quantum fluctuations of the polarization
density and the imaginary (absorptive) part of the permittivity.

The intent here is to derive, in probably the simplest way possible, expressions for the quantum elec-
tromagnetic field in a dispersive and dissipative dielectric medium, treating the medium as a continuum.
The derivation might seem superfluous in the sense that correct expressions for the electric and magnetic
fields in such a medium are already available [11]. However, the diagonalization procedure by which these
expressions are obtained is not easily applied to general, inhomogeneous media, whereas the “Langevin ap-
proach” presented here can be applied more or less straightforwardly when extended and formulated via
Green functions [12].
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We begin in the following section with the simple model of an oscillator A coupled to a reservoir R of
other oscillators, the R oscillators causing a damping of A described by a Langevin equation. In Section 3
we review the Fano procedure for the diagonalization of the Hamiltonian of this system, and compare the
diagonalization and Langevin-equation approaches insofar as they describe the time evolution of A. In the
limit of zero temperature, or at any finite temperature, the two descriptions are shown to be equivalent. In
Section 4 we generalize these considerations, following the Langevin approach, to the model of a homogeneous
dielectric medium in which each atom is treated as a harmonic oscillator coupled to its own reservoir. The
Langevin forces acting on the atoms give rise to a noise polarization determined by the reservoir operators,
and the fluctuating electromagnetic field caused by this noise polarization can therefore be expressed in terms
these operators. In similar fashion to the model of Sections 2 and 3, the quantized electric and magnetic
fields obtained in this way have exactly the same form as obtained by Fano diagonalization. It is shown
explicitly in Section 5 that the zero-point energy per mode of frequency ω is (1/2)h̄ω regardless of whether
there is absorption at that frequency [13].

2 An Oscillator and a Reservoir

Consider an oscillator A of frequency ω0 coupled to a reservoir R of other oscillators, a well-studied model for
dissipation in quantum theory. To make things as simple as possible we will assume that the A-R coupling
involves only energy-conserving processes, and choose this coupling such that the Hamiltonian is

Ĥ = h̄ω0â
†â +

∫ ∞

0

dωh̄ωb̂†(ω)b̂(ω) + h̄
√

γ/π

∫ ∞

0

dω[â†b̂(ω) + b̂†(ω)a], (1)

with [â, â†] = 1, [b̂(ω), b̂(ω′)] = 0, [b̂(ω), b̂†(ω′)] = δ(ω − ω′). (We use the circumflex to denote operators.)
Because only energy-conserving processes are included, our model is consistent with the so-called “rotating-
wave approximation” (RWA). The coupling we have chosen results in a frictional damping rate γ in the time
evolution of A, as follows.

The Heisenberg equations of motion for â and b̂(ω) are

˙̂a = −iω0a − i
√

γ/π

∫ ∞

0

dωb̂(ω), (2)

˙̂
b(ω) = −iωb̂(ω) − i

√

γ/πâ. (3)

Using the formal solution

b̂(ω, t) = b̂0(ω)e−iωt − i
√

γ/π

∫ t

0

dt′â(t′)eiω(t′−t) (4)

of equation (3) in equation (2), and defining b̂0(ω) ≡ b̂(ω, 0), we obtain

˙̂a(t) + iω0â(t) + (γ/π)

∫ ∞

0

dω

∫ t

0

dt′â(t′)eiω(t′−t) = −i
√

γ/π

∫ ∞

0

dωb̂0(ω)e−iωt, (5)

the operator on the right-hand side being a quantum Langevin force. We solve this equation for “steady
state” (γt ≫ 1) by first writing

â(t) =

∫ ∞

0

dΩA(Ω)b̂0(Ω)e−iΩt. (6)

Then, using the approximation

∫ t

0

dt′ei(ω−Ω)(t′−t) ∼= πδ(ω − Ω) − iP
1

ω − Ω
(7)
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for times t such that Ωt ≫ 1 for frequencies Ω that make a significant contribution to the time evolution of
â(t), we obtain

A(Ω) =

√

γ/π

Ω − ω0 + ∆(Ω) + iγ
. (8)

The frequency shift

∆(Ω) =
γ

π
P

∫ ∞

0

dω

ω − Ω
(9)

obviously diverges in our model, and so the upper limit of integration must be appropriately cut off; for our
purposes there is no need to explicitly indicate any cutoff. Then our solution for â(t) is

â(t) =

√

γ

π

∫ ∞

0

dΩ
b̂0(Ω)e−iΩt

Ω − ω0 + ∆(Ω) + iγ
. (10)

Note that, under the assumption that ω0 ≫ γ, consistent with the RWA, we have

[â(t), â†(t)] =
γ

π

∫ ∞

0

dω

(ω − ω0)2 + γ2
∼= 1, (11)

as required for the validity of the RWA.

3 Fano Diagonalization

A method of diagonalizing a Hamiltonian for coupled oscillators, used many years ago by Fano [14], has been
employed in seminal work by Huttner and Barnett [11] to obtain expressions for the quantized fields in a
dissipative dielectric medium. Here we briefly review the method in the case of the model Hamiltonian (1),
and compare it to the approach of the preceding section.

We define an operator

B̂(Ω) = α(Ω)â +

∫ ∞

0

dωβ(Ω, ω)b̂(ω) (12)

that we require to satisfy

[B̂(Ω), B̂†(Ω′)] = δ(Ω − Ω′), [B̂(Ω), B̂(Ω′)] = 0, (13)

and also require that the Hamiltonian (1) takes the diagonal form

Ĥ =

∫ ∞

0

dΩh̄ΩB̂†(Ω)B̂(Ω). (14)

From [B̂(Ω), Ĥ ] = h̄ΩB̂(Ω) and the definition (12) we deduce equations relating the coefficients α(Ω) and
β(Ω, ω):

(ω0 − Ω)α(Ω) = −
√

γ

π

∫ ∞

0

dωβ(Ω, ω), (15)

∫ ∞

0

dω

[

(ω − Ω)β(Ω, ω) +

√

γ

π
α(Ω)

]

b̂(ω) = 0. (16)

The last equation leads us to write

β(Ω, ω) = α(Ω)f(Ω)δ(ω − Ω) −
√

γ

π

α(Ω)

ω − Ω
, (17)

and it follows from (15) that

f(Ω) =

√

π

γ
[Ω − ω0 + ∆(Ω)], (18)
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i.e.,

β(Ω, ω) =

√

π

γ
α(Ω)[Ω − ω0 + ∆(Ω)]δ(ω − Ω) −

√

γ

π

α(Ω)

ω − Ω
, (19)

where ∆(Ω) is defined by (9).
To determine α(Ω) we impose the requirement that the commutation relations (13) be satisfied. From

the commutation relations stated earlier for the â and b̂ operators we obtain

[B̂(Ω), B̂†(Ω′)] = α(Ω)α∗(Ω′) +

∫ ∞

0

dω

∫ ∞

0

dω′β(Ω, ω)β∗(Ω′, ω′)δ(ω − ω′) (20)

or, from (19) and some straightforward algebra,

[B̂(Ω), B̂†(Ω′)] =
π

γ
α(Ω)α∗(Ω′) ×

{

[Ω − ω0 + ∆(Ω)]2δ(Ω − Ω′)

+
γ

π

∆(Ω′) − ∆(Ω)

Ω′ − Ω
+

γ2

π2
P

∫ ∞

0

dω

ω − Ω
P

∫ ∞

0

dω′

ω′ − Ω′
δ(ω − ω′)

}

. (21)

Using

P
1

ω − Ω
=

1

ω − Ω + iǫ
+ iπδ(ω − Ω) (ǫ → 0+) (22)

and partial fractions we obtain

[B̂(Ω), B̂†(Ω′)] =
π

γ
α(Ω)α∗(Ω′)

(

γ2 + [Ω − ω0 + ∆(Ω)]2
)

δ(Ω − Ω′). (23)

Therefore we can satisfy (13) by taking

α(Ω) =

√

γ/π

Ω − ω0 + ∆(Ω) − iγ
. (24)

Then

â(t) =

∫ ∞

0

dΩα∗(Ω)B̂(Ω, t) =

√

γ

π

∫ ∞

0

dΩ
B̂(Ω, 0)e−iΩt

Ω − ω0 + ∆(Ω) + iγ
, (25)

since B̂(Ω, t) = B̂(Ω, 0)e−iΩt.
The expressions (10) and (25) obtained respectively in the Langevin and Fano approaches look formally

the same in the sense that [B̂(Ω, 0), B̂†(Ω′, 0)] = [b̂0(Ω), b̂†0(Ω
′)] = δ(Ω − Ω′) and [B̂(Ω, 0), B̂(Ω′, 0)] =

[b̂0(Ω), b̂0(Ω
′)] = 0. They differ in that B̂(Ω, 0) in (25) is a linear combination of A and R operators, whereas

only R operators determine â(t) in (10). Suppose, however, that at t = 0 the A and R oscillators are all in
their ground states. This state |Ψ〉 is the exact ground state of the coupled A-R system in the RWA:

B̂†(Ω, t)B̂(Ω, t)|Ψ〉 = 0. (26)

In this case the properties of A derived from (10) are trivially equivalent to those obtained from (25). If
the system is not initially in an eigenstate of B̂†B̂, it will nevertheless approach after a time ≫ γ−1 an
equilibrium state for which the long-term solution (10) for â(t) is applicable, i.e., transient effects associated
with â(0) at some initial time t = 0 ultimately play no role in the evolution of A. Equilibrium values of
correlation functions involving products of the B̂ operators are determined solely by the reservoir operators;
in thermal equilibrium, for example, 〈B̂†(Ω, t)B̂(Ω′, t)〉 = 〈b̂†(Ω, t)b̂(Ω′, t)〉 = [exp(h̄Ω/kBT )− 1]−1δ(Ω−Ω′)
and it follows from either (10) or (25) that 〈â†(t)â(t)〉 = [exp(h̄ω0/kBT )−1]−1 when we invoke the condition
ω0 ≫ γ as in (11). In other words, in any state of equilibrium the solutions (10) and (25) provide equivalent
descriptions of A. This equivalence holds more generally beyond the RWA (see below).
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4 Fields in a Dielectric Continuum

Aside from the need to introduce oscillator strengths in order to obtain correct numerical results, we can
model a dielectric medium in which atoms remain with high probability in their ground states as a collection
of harmonic oscillators. We take each oscillator “atom” to have a mass m and a natural frequency ω0. We
assume each of these material oscillators is coupled to a reservoir of other harmonic oscillators responsible
for the damping of its oscillations and line broadening. For the Hamiltonian, including the electromagnetic
field and its (electric-dipole) coupling to the material oscillators, we write

Ĥ =
1

8π

∫

dr(Ê2 + Ĥ2) +
∑

j

(

1

2m
[p̂j −

e

c
Â(rj)]

2 +
1

2
mω2

0x̂
2
j

)

+

∫ ∞

0

dωh̄ω
∑

j

[

b̂
†
j(ω) · b̂j(ω) +

1

2

]

− i

∫ ∞

0

dωΛ(ω)
∑

j

x̂j · [b̂j(ω) − b̂
†
j(ω)]. (27)

The first two terms are the Hamiltonian operators for the electromagnetic field, the material oscillators
(atoms), and their coupling via the (Coulomb-gauge) vector potential Â(rj), rj being the position of the jth
atom. The third and fourth terms are respectively the Hamiltonian operators for the reservoir oscillators
and their interaction with the atoms. The reservoir oscillators satisfy the commutation relations

[b̂iµ(ω), b̂†jν(ω′)] = δijδµνδ(ω − ω′), [b̂iµ(ω), b̂jν(ω′)] = 0, (28)

where we use Greek letters to denote Cartesian components of vectors. We choose the atom-reservoir coupling
constant to be

Λ(ω) =

(

mh̄γω

π

)1/2

. (29)

Then, as shown below, each atom’s oscillations are damped at the rate γ. Note that no rotating-wave
approximation is made in writing (27). The operators Â and Ê satisfy the usual canonical commutation
relations for the electromagnetic field.

From (28) and [x̂iµ, p̂jν ] = ih̄δijδµν we obtain the Heisenberg equations of motion

¨̂xj + ω2
0x̂j =

e

m
Ê(rj) +

i

m

∫ ∞

0

dωΛ(ω)[b̂j(ω, t) − b̂
†
j(ω, t)], (30)

˙̂
bj(ω, t) = −iωb̂j(ω, t) +

1

h̄
Λ(ω)x̂j . (31)

Using the formal solution of (31) in (30), we write

¨̂xj + ω2
0x̂j =

e

m
Ê(rj) +

1

m
F̂Lj(t) +

i

mh̄

∫ ∞

0

dωΛ2(ω)

∫ t

0

dt′x̂j(t
′)[2i sinω(t′ − t)], (32)

where the Langevin force operator F̂Lj(t) acting on the jth atom is

F̂Lj(t) = i

∫ ∞

0

dωΛ(ω)[b̂j(ω, 0)e−iωt − b̂
†
j(ω, 0)eiωt]. (33)

The third term on the right-hand side of (32) is

− 2

mh̄

∫ ∞

0

dωΛ2(ω)

∫ t

0

dt′x̂j(t
′) sin ω(t′ − t) = −2γ

π

∫ t

0

dt′x̂j(t
′)

∫ ∞

0

dωω sinω(t′ − t) = 2γ

∫ t

0

dt′x̂j(t
′)

∂

∂t′
δ(t′ − t) = −γ ˙̂xj(t) . (34)
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We ignore a divergent frequency shift which, as in the model considered in the preceding sections, can be
made finite by introducing a form factor or a high-frequency cutoff; the (finite) shift can be assumed to be
contained in the definition of ω0. Equation (32) then has the form of a quantum Langevin equation:

¨̂xj + γ ˙̂xj + ω2
0x̂j =

e

m
Ê(rj) +

1

m
F̂Lj(t). (35)

In the absence of coupling to the electromagnetic field we have, for times t ≫ γ−1,

p̂j(t) = m ˙̂xj(t) =

∫ ∞

0

dωωΛ2(ω)

[

b̂j(ω)e−iωt

ω2
0 − ω2 − iγω

+
b̂
†
j(ω)eiωt

ω2
0 − ω2 + iγω

]

. (36)

(We now write b̂j(ω) in place of b̂j(ω, 0).) Similarly, using (28), we obtain

[x̂iµ(t), p̂jν(t′)] = δijδµν
2ih̄γ

π

∫ ∞

0

dωω2 cosω(t′ − t)

(ω2
0 − ω2)2 + γ2ω2

= ih̄δijδµν

[

cosω1(t
′ − t) − γ

2ω1
sin ω1|t′ − t|

]

e−γ|t′−t|/2, (37)

where ω1 ≡ [ω2
0 − γ2/4]1/2. The canonical commutation relation [x̂iµ(t), p̂jν(t)] = ih̄δijδµν is therefore

preserved in the coupling of each atom to its reservoir.
Since we are working in the Heisenberg picture, expectation values are over the initial state of the

coupled system of oscillators. If we assume that the reservoir is in an initial state of thermal equilibrium at
temperature T , then

〈b̂†iµ(ω)b̂jν(ω′)〉 = 〈b̂iµ(ω)b̂†jν(ω′)〉 − δijδµνδ(ω − ω′) =
1

eh̄ω/kBT − 1
δijδµνδ(ω − ω′). (38)

The Heisenberg equations of motion for the electric and magnetic fields that follow from the Hamiltonian
(27) and the canonical commutation relations for the field operators have exactly the same form as their
classical (Maxwell) counterparts:

∇× Ê = −1

c

∂B̂

∂t
,

∇× Ĥ =
4π

c
Ĵ +

1

c

∂Ê

∂t
. (39)

For a charge-free medium, furthermore, ∇ · B̂ = ∇ · D̂ = 0, where

D̂ = Ê + 4πP̂,

Ĵ(r, t) =
∂P̂(r, t)

∂t
,

P̂(r, t) = e
∑

j

x̂j(t)δ
3(r − rj), (40)

with B̂ = Ĥ in our model.
It is convenient to work in the frequency domain and write

Ê(r, t) =

∫ ∞

0

dω[Ê(r, ω)e−iωt + Ê†(r, ω)eiωt],

Ĥ(r, t) =

∫ ∞

0

dω[Ĥ(r, ω)e−iωt + Ĥ†(r, ω)eiωt],

P̂(r, t) =

∫ ∞

0

dω[P̂(r, ω)e−iωt + P̂†(r, ω)eiωt]. (41)
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The Fourier transform of the polarization density may be written as

P̂(r, ω) = e
∑

j

x̂j(ω)δ3(r − rj), (42)

x̂j(t) =

∫ ∞

0

dω[x̂j(ω)e−iωt + x̂
†
j(ω)eiωt], (43)

and it follows from (35) that

P̂(r, ω) =
e2/m

ω2
0 − ω2 − iγω

∑

j

Ê(rj , ω)δ3(r − rj) +
ie/m

ω2
0 − ω2 − iγω

Λ(ω)
∑

j

b̂j(ω)δ3(r − rj)

→ Ne2/m

ω2
0 − ω2 − iγω

Ê(r, ω) +
iNe/m

ω2
0 − ω2 − iγω

Λc(ω)b̂(r, ω) (44)

in the approximation in which we assume the atoms are continuously distributed with a density N and we
define Λc(ω) =

√

ρmh̄γω/π, with ρm = m/N .
From Maxwell’s equations and (44) we obtain

∇2Ê(r, ω) +
ω2

c2
ǫ(ω)Ê(r, ω) = −ω2

c2
K̂(r, ω), (45)

where the complex permittivity is defined as

ǫ(ω) = 1 − 4πNe2/m

ω2 − ω2
0 + iγω

≡ 1 −
ω2

p

ω2 − ω2
0 + iγω

= ǫR(ω) + iǫI(ω). (46)

We have also defined the “noise polarization” at frequency ω:

K̂(r, ω) =
4πiNe/m

ω2
0 − ω2 − iγω

Λ(ω)b̂(r, ω). (47)

This noise polarization obviously stems from the Langevin force F̂Lj(t) in the quantum Langevin equation
(35). Its principal properties for our purposes are the thermal equilibrium expectation values

〈K̂µ(r, ω)〉 = 〈K̂†
µ(r, ω)〉 = 0,

〈K̂µ(r, ω)K̂ν(r′, ω′)〉 = 〈K̂†
µ(r, ω)K̂†

ν(r′, ω′)〉 = 0, (48)

and

〈K̂†
µ(r, ω)K̂ν(r′, ω′)〉 = 4h̄ǫI(ω)δµνδ(ω − ω′)δ3(r − r′)

1

eh̄ω/kBT − 1
, (49)

〈K̂µ(r, ω)K̂†
ν(r′, ω′)〉 = 4h̄ǫI(ω)δµνδ(ω − ω′)δ3(r − r′)

[

1

eh̄ω/kBT − 1
+ 1

]

, (50)

all of which follow from (38) and 〈b̂iµ(ω)b̂jν(ω′)〉 = 0. Equations (49) and (50) are the well-known fluctuation-
dissipation relations between the correlation functions of a noise polarization and the imaginary part of the
dielectric function [10, 15].

Next we define operators ĝλ(k, ω) by writing

K̂(r, ω) =

∫

d3k
∑

λ=1,2

ĝλ(k, ω)ekλeik·r. (51)

Since ∇ · K̂(r, ω) = 0 we can choose the vectors ekλ such that k · ekλ = 0, ekλ · ekλ′ = 0, λ = 1, 2; we also
take the ekλ to be real. Then

ĝλ(k, ω) =

(

1

2π

)3 ∫

d3r K̂(r, ω) · ekλe−ik·r ≡
(

1

2π

)3 ∫

d3rK̂λ(r, ω)e−ik·r, (52)
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and Eqs. (47) and (28) imply the commutation relation

[ĝλ(k, ω), ĝ†λ′(k
′, ω′)] =

h̄

2π3
ǫI(ω)δλλ′δ(ω − ω′)δ3(k − k′). (53)

We also define operators
ĉλ(k, ω) ≡ [h̄ǫI(ω)/2π3]−1/2ĝλ(k, ω) (54)

satisfying
[ĉλ(k, ω), ĉ†λ′ (k

′, ω′)] = δλλ′δ(ω − ω′)δ3(k − k′). (55)

Finally an expression for the quantized electric field follows from (41), (45), (51), and (54):

Ê(r, t) =

∫

d3k
∑

λ

∫ ∞

0

dω
√

h̄ǫI(ω)/2π3
ω2/c2

k2 − ǫ(ω)ω2/c2
ĉλ(k, ω)ekλe−i(ωt−k·r) + h.c. (56)

From ∇× Ê = −(1/c)∂B̂/∂t we also obtain

Ĥ(r, t) = i

∫

d3k
∑

λ

∫ ∞

0

dω
√

h̄ǫI(ω)/2π3
ω/c

k2 − ǫ(ω)ω2/c2
ĉλ(k, ω) (k × ekλ) e−i(ωt−k·r) + h.c. (57)

These expressions have the same form as the corresponding ones obtained by Huttner and Barnett [11]
by Fano diagonalization of the entire system of coupled harmonic oscillators (EM field, dielectric oscillators,
and bath oscillators). Their equations for the quantized electric and magnetic fields, however, involve

annihilation and creation operators Ĉλ(k, ω) and Ĉ†
λ(k, ω) for the exactly diagonalized Hamiltonian, instead

of the reservoir annihilation and creation operators ĉλ(k, ω) and ĉ†λ(k, ω) appearing in our expressions (56)
and (57). Their diagonalized Hamiltonian, including the zero-point energy, is

H =

∫

d3k
∑

λ

∫ ∞

0

dωh̄ω
[

Ĉ†
λ(k, ω)Ĉλ(k, ω) + 1/2

]

. (58)

The situation here parallels that for the simple model employed in Sections 2 and 3, except that no rotating-
wave approximation has been made, and that one deals with three coupled subsystems instead of two coupled
subsystems: we again arrive at results by a straightforward “Langevin” approach that are equivalent to those

obtained by diagonalizing the complete Hamiltonian. Equations (56) and (57) are analogous to equation
(10) obtained in the Langevin approach to the single oscillator coupled to a reservoir, whereas the Huttner-
Barnett equations for the fields are analogous to equation (25) obtained by exact diagonalization. As in the
model of Sections 2 and 3, results such as (56) and (57) obtained by the Langevin approach will reproduce
those obtained by exact diagonalization for dielectric media in thermal equilibrium. To illustrate this we
show in the next section that the total zero-point energy appearing in (58) follows exactly from our approach;
the calculation also sheds light on some of the physics involved, and in particular on the role of the Langevin
forces in maintaining equilibrium.

5 Energy Density

We consider now the total energy density of the system of dielectric atoms, their reservoirs, and the electro-
magnetic field, focusing for simplicity on the limit of zero temperature. We start from Poynting’s theorem in
the conventional notation, using the symmetrized Poynting operator Ŝ = (c/8π)[Ê× Ĥ− Ĥ× Ê] and taking
expectation values over the initial state of the system consisting of the field, the dielectric atoms, and the
reservoir:

∮

〈Ŝ〉 · nda = − 1

8π

∫

〈Ê · ∂D̂

∂t
+

∂D̂

∂t
· Ê〉dV − 1

8π

∫

〈Ĥ · ∂Ĥ

∂t
+

∂Ĥ

∂t
· Ĥ〉dV. (59)
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The left-hand side gives the energy flux through a closed surface S and, given that we are assuming thermal
equilibrium, must vanish. We identify the rate of change of the expectation value of the total energy density
W as

∂W

∂t
=

1

8π
〈Ê · ∂D̂

∂t
+

∂D̂

∂t
· Ê〉 +

1

8π

∂

∂t
〈Ĥ2〉, (60)

and the assumption of thermal equilibrium implies that this must also vanish. In the case of interest
D̂ = Ê + 4πP̂ǫ + K̂, where P̂ǫ is the part of the polarization giving rise to the dielectric permittivity ǫ(ω)

and K̂ is the noise polarization defined by (47). Thus D̂ = D̂ǫ + K̂ and

∂W

∂t
=

∂W1

∂t
+

∂W2

∂t
, (61)

where
∂W1

∂t
=

1

8π
〈Ê · ∂D̂ǫ

∂t
+

∂D̂ǫ

∂t
· Ê〉 +

1

8π

∂

∂t
〈Ĥ2〉 (62)

and
∂W2

∂t
=

1

8π
〈Ê · ∂K̂

∂t
+

∂K̂

∂t
· Ê〉. (63)

Before proceeding with the calculation of W we note the following identity expressing conservation of
energy:

∂W

∂t
= 〈 ∂

∂t

∑

j

[

1

2
m ˙̂x

2

j +
1

2
mω2

0x̂
2
j

]

δ3(r − rj) +
1

4π

∂

∂t

[

Ê2 + Ĥ2
]

+
∑

j

[2γ(
1

2
m ˙̂x

2

j ) − ˙̂xj · FLj]δ
3(r − rj)〉. (64)

The first term is the rate of change of the energy density (kinetic plus potential) of the oscillators of the
dielectric, while the second term is the rate of change of the energy density of the electromagnetic field. If
there were no dissipation (γ = 0 and therefore FLj = 0), the third term on the right would vanish, and W
would be just the matter-plus-field energy density. The third term gives the rate of change of the energy

density in the reservoirs; 2γ
∑

j(
1
2m ˙̂x

2

j)δ
3(r − rj) is the rate of increase of energy density in the reservoir,

equal to the rate at which the energy density of the dielectric oscillators decreases due to their coupling to
their reservoirs, while

∑

j
˙̂xj ·FLjδ

3(r− rj) is the rate of work per unit volume done by the Langevin forces
of the reservoirs on the dielectric oscillators.

Using (41) and

∂D̂ǫ

∂t
= −i

∫ ∞

0

dωω[ǫ(ω)Ê(r, ω)e−iωt − ǫ∗(ω)Ê†(r, ω)e+iωt], (65)

and integrating over t, we obtain

W1(r, t) =
1

8π

∑

λ

∫ ∞

0

dω′

∫ ∞

0

dω
ω′ǫ∗(ω′) − ωǫ(ω)

ω′ − ω
〈Êλ(r, ω) · Ê†

λ(r, ω′)〉e−i(ω−ω′)t +
1

8π
〈Ĥ2(r, t)〉, (66)

since the zero-temperature expectation value 〈Ê†
λ(r, ω) · Êλ′(r, ω′)〉 = 0 and 〈Êλ(r, ω) · Ê†

λ′(r, ω′)〉 = 0 unless
λ = λ′ and ω = ω′. It is convenient to rewrite (66) as a sum of two identical terms and to interchange ω and
ω′ in one of these terms; this allows us to write

W1(r, t) =
1

8π

∑

λ

∫ ∞

0

dω′

∫ ∞

0

dω
ω′ǫR(ω′) − ωǫR(ω)

ω′ − ω
〈Êλ(r, ω) · Ê†

λ(r, ω′)〉e−i(ω−ω′)t

− i

8π

∑

λ

∫ ∞

0

dω′

∫ ∞

0

dω (ω′ǫI(ω
′) + ωǫI(ω))
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×〈Êλ(r, ω) · Ê†
λ(r, ω′)〉e−i(ω−ω′)t − 〈Êλ(r, ω′) · Ê†

λ(r, ω)〉ei(ω−ω′)t

2(ω′ − ω)
+

1

8π
〈Ĥ2(r, t)〉.

(67)

It follows from (55) and (56) that the vacuum (zero temperature) expectation value

〈Êλ(r, ω) · Ê†
λ(r, ω′)〉 = 〈Êλ(r, ω′) · Ê†

λ(r, ω)〉 =
h̄

2π3
ǫI(ω)

ω4

c4

∫

d3k
1

|k2 − ǫ(ω)ω2/c2|2 δ(ω − ω′). (68)

The first term in (67) is now evaluated using

lim
ω′→ω

ωǫR(ω) − ω′ǫR(ω′)

ω − ω′
=

d

dω
[ωǫR(ω)]. (69)

We evaluate the second term by noting that the zeroth-order contributions in (ω − ω′) in the numerator
cancel each other, while the first-order terms result in a contribution linear in the elapsed time t:

lim
ω′→ω

e−i(ω−ω′)t − ei(ω−ω′)t

2(ω′ − ω)
= it. (70)

Therefore

W1(r, t) =
1

8π

h̄

2π3c4

∑

λ

∫ ∞

0

dω

(

d

dω
[ωǫR] + 2tωǫI

)

ω4ǫI

∫

d3k
1

|k2 − ǫω2/c2|2 +
1

8π
〈Ĥ2(r, t)〉

=
h̄

8π2c3

∑

λ

∫ ∞

0

dωω3nR
d

dω
[ωǫR] +

1

8π
〈Ĥ2(r, t)〉 + t

h̄

4π2c3

∑

λ

∫ ∞

0

dωω4nRǫI , (71)

where we have used the relations ǫR = n2
R −n2

I and ǫI = 2nRnI between the real and imaginary parts of the
permittivity ǫ(ω) and the refractive index n(ω).

For the evaluation of W2 it is convenient to define K̂(k, ω) by writing

K̂(r, t) =

∫ ∞

0

dω

∫

d3k
∑

λ

[K̂λ(k, ω)e−iωteik·r + K̂
†
λ(k, ω)eiωte−ik·r], (72)

and use (51), (54), and (56) to relate K̂λ(k, ω) and Êλ(k, ω):

K̂λ(k, ω) =
c2

ω2
[k2 − ǫ(ω)ω2/c2]Êλ(k, ω). (73)

After inserting (72) and (73) in (63) and performing some algebra we get

W2(r, t) = − h̄

16π4c2

∑

λ

∫ ∞

0

dω′

∫ ∞

0

dω
ω2ω′

ω − ω′

√

ǫI(ω)ǫI(ω′)δ(ω − ω′)

×
∫

d3k

[

e−i(ω−ω′)t

k2 − ǫ(ω)ω2/c2
+

ei(ω−ω′)t

k2 − ǫ∗(ω)ω2/c2

]

, (74)

and, proceeding as in the evaluation of W1,

W2(r, t) = − h̄

8π4c2

∑

λ

Re

∫ ∞

0

dω′

∫ ∞

0

dω
ω2ω′

ω − ω′

√

ǫI(ω)ǫI(ω′)δ(ω − ω′)

×
∫

d3k
1

k2 − ǫ(ω′)ω′2/c2
− t

h̄

4π2c3

∑

λ

∫ ∞

0

dωω4nR ǫI . (75)
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We see that the time-dependent term in W2(t) exactly cancels the time-dependent term in W1(t).
The total energy density is obtained by adding (71) and (75) [13]:

W =
h̄

8π2c3

∑

λ

∫ ∞

0

dωω3

{

Re

[

nR
d

dω
(ωǫ) + ǫ3/2

]

+
1

ω
ǫIIm

d

dω
(ω2ǫ1/2)

}

. (76)

Finally, using ǫ(ω) = n2(ω) and the following relations

nR
d

dω
(ωǫR) = (n2

R − n2
I)nR + ωnR

(

2nR
dnR

dω
− 2nI

dnI

dω

)

,

Re ǫ3/2 = n3
R − 3nRn2

I ,

ǫI

ω
Im

d

dω
(ω2

√
ǫ) = 4nRn2

I + 2nRnIω
dnI

dω
, (77)

and summing over polarizations, we obtain the vacuum expectation value of the total energy density:

W =
h̄

2π2c3

∫ ∞

0

dωω3n2
R(ω)

(

nR + ω
dnR

dω

)

=
h̄

2π2c3

∫ ∞

0

dωω3n2
R(ω)

d

dω
[ωnR(ω)]. (78)

This has the exactly the form expected had we ignored absorption entirely and simply posited that each
mode of frequency ω and wavenumber k = nR(ω)ω/c has a zero-point energy (1/2)h̄ω, so that the energy
density summed over all modes is

W = 2

(

1

2π

)3 ∫

d3k
1

2
h̄ω. (79)

The physical interpretation of this result is that the loss of energy due to absorption is balanced by the work
done by the Langevin forces that maintain the canonical commutation relations of the dielectric oscillators.

6 Summary

Based on the simple model of a harmonic oscillator coupled to a reservoir, we showed how the Heisen-
berg equations of motion leading to a Langevin equation for the oscillator can give results equivalent to
those obtained from the exact (Fano) diagonalization of the complete oscillator-reservoir system. We then
used the model of a dielectric medium as a collection of harmonic oscillators, each oscillator coupled to a
reservoir responsible for dissipation and a Langevin force as well as to the electromagnetic field, to derive
the fluctuation-dissipation relation between the noise polarization arising from the Langevin forces and the
imaginary part of the permittivity of the dielectric medium.

The simple oscillator-reservoir model we considered would suggest that the solutions for the electric and
magnetic fields in a dielectric medium, with the noise polarization as a source, might have the same form
as obtained when the complete system of dielectric oscillators, reservoirs, and the electromagnetic field is
diagonalized. We showed that this is in fact the case. Then we considered the total energy density of the
complete system and showed explicitly that it is given by Eq. (78), which is exactly the form of the energy
density obtained when absorption is ignored. In particular, we showed that a positive energy rate Ẇ1 > 0
arising from the interaction of the electromagnetic field with the dielectric oscillators is exactly canceled
by a corresponding negative energy rate coming from the interaction of the system with the reservoir,
Ẇ2 = −Ẇ1 < 0.
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